The purpose of this study was to determine the extent to which we could use a split-belt experimental paradigm to increase limb or joint work. Split-belt treadmill walking was combined… Click to show full abstract
The purpose of this study was to determine the extent to which we could use a split-belt experimental paradigm to increase limb or joint work. Split-belt treadmill walking was combined with uphill walking at 0°, 5° and 10° in young, healthy individuals to assess whether we could specifically target increased force output between and within limbs. Thirteen healthy, young adults participated in this study. Participants performed walking trials with the left belt at 1.0 m/s and the right belt at 0.5 m/s. Repeated measures ANOVAs assessed the effects of speed of the treadmill belt and incline on total and joint specific positive extensor work as well as relative work. Mechanical work varied because of the speed and incline of the treadmill belt at the level of the total limb and across joints. Positive lower extremity relative joint work varied as a result of treadmill belt speed and treadmill incline. Positive mechanical work was greater on the limb that was on the faster treadmill belt, regardless of incline. Increases in relative knee but not hip joint work increased as incline increased. The current investigation shows that the nervous system can shift mechanical work production both between and within limbs to safely walk in a novel split-belt environment. This work extends previous research by demonstrating that researchers/clinicians can also use increasing treadmill incline (or some other means to add increased resistive forces) during split-belt treadmill walking to encourage increased mechanical output at particular limbs and/or joints which may have rehabilitation implications.
               
Click one of the above tabs to view related content.