Recently, we showed that immunized rabbit heavy chain variable regions (rVHs) can have strong antigen binding activity comparable to that of the camelid variable domain of the heavy chain of… Click to show full abstract
Recently, we showed that immunized rabbit heavy chain variable regions (rVHs) can have strong antigen binding activity comparable to that of the camelid variable domain of the heavy chain of heavy chain antibody (VHH). These rVHs lack the light chain variable regions (rVLs), which exist in the authentic Fab format; thus, molecular surfaces at the interface region of rVHs are exposed to solvent. This physical feature may change physicochemical properties, such as causing reduced stability. By overcoming potential physicochemical issues through engineering the interface region, rVHs could become more useful as single-domain antibodies. In this study, we substituted amino acid residues conserved at the interface region of rVHs with those of VHHs. These substitutions included V37F, involving substitution of a residue in the hydrophobic core with a bulkier hydrophobic amino acid, and G44E/L45R, involving double substitutions of highly exposed residues with more hydrophilic ones. As expected, biophysical and structural characterizations showed that the V37F substitution markedly enhanced the thermal stability through increased hydrophobic packing, while G44E/L45R substitutions greatly reduced hydrophobicity of the interface. The quadruple substitutions of V37F/G44E/L45R/F91Y resulted in not only enhancements of thermal stability and reduction in hydrophobicity, both in an additive manner, but also synergistic improvement of purification yield. This quadruple mutant exhibited greatly reduced non-specific binding with improved colloidal stability owing to the reduced hydrophobicity. The approach used in this study should further enhance the utility of rVHs and promote research and development of single-domain antibodies.
               
Click one of the above tabs to view related content.