LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria.

Photo from wikipedia

Benefiting from lower operational costs and energy requirements than do hydrometallurgical and pyrometallurgical processes in metal recovery, the bioleaching of LiCoO2 through the use of sulfur-oxidizing and iron-oxidizing bacteria has… Click to show full abstract

Benefiting from lower operational costs and energy requirements than do hydrometallurgical and pyrometallurgical processes in metal recovery, the bioleaching of LiCoO2 through the use of sulfur-oxidizing and iron-oxidizing bacteria has drawn increasing attention. However, the bioleaching mechanism of LiCoO2 has not been clearly elaborated. In the present study, the effects of the energy source of bacteria, such as Fe2+, pyrite and S0, and the products of bacterial oxidation, such as Fe3+ and sulfuric acid, on the chemical leaching of LiCoO2 were studied. The results indicated that lithium was dissolved by acid, and cobalt was released by the reduction of Fe2+ and acid dissolution. The recovery of Li+ and Co2+ could be significantly improved by pH adjustment. Finally, optimal recoveries of Li+ and Co2+ were observed in the pyrite group, reaching 91.4% and 94.2%, respectively. By using pyrite as the energy source, the role of bacteria in bioleaching of LiCoO2 was investigated. The results showed that bacteria could produce sulfuric acid by oxidizing pyrite to promote the mobilization of Li+ and Co2+. The recovery of lithium and cobalt could be increased to 100.0% and 99.3% by bacteria. Moreover, extracellular polymeric substances secreted by bacteria were found to be a factor for the improvement of Li+ and Co2+ recovery.

Keywords: recovery; sulfur oxidizing; licoo2; oxidizing iron; oxidizing bacteria; iron oxidizing

Journal Title: Journal of bioscience and bioengineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.