LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wheat germin-like protein: Studies on chitin/chitosan matrix for tissue engineering applications.

Photo by priscilladupreez from unsplash

Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules… Click to show full abstract

Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules to enhance in vitro and/or in vivo functions. In this work, we study the role of a wheat germin-like protease inhibitor (GLPI), free or immobilized in biocompatible matrices to improve cell-attachment ability on different mammalian cell lines. The phylogenetic relationships and functional diversity of the GLPI were analyzed among diverse genera to get insights into sequence motif conservations. The cytocompatibility effect of free GLPI on C2C12 premyoblastic cells and B16 cells as tumoral model has been tested. GLPI promoted proliferation and metabolic activity of both cell types on in vitro models, not showing cytotoxic effects. Furthermore, GLPI was immobilized in chitin microparticles and in chitosan films; we demonstrated an accelerated cell adhesion process in both biomaterials.

Keywords: wheat germin; cell; germin like; tissue engineering

Journal Title: Journal of bioscience and bioengineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.