LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Niclosamide affects intracellular TDP-43 distribution in motor neurons, activates mitophagy, and attenuates morphological changes under stress.

Photo by museumsvictoria from unsplash

Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron loss in the brain and spinal cord; however, its etiology is unknown, and no curative treatment exists. TAR DNA-binding protein… Click to show full abstract

Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron loss in the brain and spinal cord; however, its etiology is unknown, and no curative treatment exists. TAR DNA-binding protein 43 (TDP-43), encoded by TARDBP, is a genetic mutation observed in 2-5% of familial ALS, and TDP is known to be mislocalized in the cytoplasm. This study aimed to identify compounds that inhibited the nuclear to cytoplasmic localization of TDP-43 in human induced pluripotent stem (iPS) cells-derived neurons. TDP-43 transgenic human iPS cells were constructed, differentiated into motor neurons, and then treated with MG-132 and sodium arsenite (stressors) to induce nuclear to cytoplasmic localization of TDP-43. STAT3 inhibitors, such as niclosamide, prevented TDP-43 mislocalization and degraded TDP-43 aggregates, and attenuated morphological changes under stress. Furthermore, niclosamide activated mitophagy via the PINK1-parkin-ubiquitin pathway. These findings suggest niclosamide may be a therapeutic candidate for ALS.

Keywords: morphological changes; tdp; motor neurons; changes stress; niclosamide affects; motor

Journal Title: Journal of bioscience and bioengineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.