Herein, we reported that Rhodobacter sphaeroides (R. sphaeroides) can be engineered by heterologous expression of an alcohol dehydrogenase (adh) from Leifsonia sp. to build a light-driven cofactor regeneration system for… Click to show full abstract
Herein, we reported that Rhodobacter sphaeroides (R. sphaeroides) can be engineered by heterologous expression of an alcohol dehydrogenase (adh) from Leifsonia sp. to build a light-driven cofactor regeneration system for synthesis of chiral alcohol. The model substrate, 3'-chloroacetophenone, can be reduced by the engineered R. sphaeroides to (R)-1-(3-chlorophenyl) ethanol with an enantiomeric excess (e.e.) value of more than 99% in an n-hexane/aqueous biphasic media. This system, which is fully controlled by light, exhibited potential power to be an alternative cofactor regeneration platform for cheap synthesis of various chiral alcohols via the cloning other oxidoreductases with diverse characteristics.
               
Click one of the above tabs to view related content.