LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile biosynthesis of synthetic crystalline cellulose nanoribbon from maltodextrin through a minimized two-enzyme phosphorylase cascade and its application in emulsion.

Photo by mishu3d from unsplash

Nanocellulose has many promising applications such as a green ingredient for Pickering emulsion. Traditional strategies to produce nanocellulose, which are acid or enzymatic hydrolysis and mechanical methods on natural complicated… Click to show full abstract

Nanocellulose has many promising applications such as a green ingredient for Pickering emulsion. Traditional strategies to produce nanocellulose, which are acid or enzymatic hydrolysis and mechanical methods on natural complicated cellulose, are hard to control and can result in significant pollutants during the processes. Herein, we demonstrated a facile and sustainable method for the biocatalytic production of insoluble synthetic crystalline cellulose nanoribbon (CCNR) from cheap maltodextrin by coupling α-glucan phosphorylase (αGP) and cellodextrin phosphorylase (CDP) using cellobiose as a primer. And by optimizing the combination of different αGP and CDP, it turned out that the optimal enzyme combination is αGP from Thermotoga maritime and CDP from Clostridium thermocellum, in which CDP was attached to a family 9 cellulose-binding module. The product yield and degree of polymerization (DP) of insoluble synthetic CCNR was affected by the primer concentration at a fixed concentration of maltodextrin. After optimization of reaction conditions, the highest product yield of insoluble synthetic CCNR was 44.92% and the highest DP of the insoluble synthetic CCNR was 24 from 50 g 1-1 maltodextrin. This insoluble synthetic CCNR can be used as a Pickering emulsions stabilizer, showing excellent emulsifiability. This study provides a promising alternative for cost-efficient production of insoluble synthetic CCNR which was used as a green emulsion stabilizer.

Keywords: synthetic ccnr; cellulose; insoluble synthetic; synthetic crystalline; phosphorylase; ccnr

Journal Title: Journal of biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.