LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis

Photo by rhfhanssen from unsplash

Abstract NH3 synthesis on Ru, Os, and Rh nanoparticle catalysts was investigated using density functional theory calculations. The Ru and Os nanoparticles exhibited similar shapes, while that of Rh differed… Click to show full abstract

Abstract NH3 synthesis on Ru, Os, and Rh nanoparticle catalysts was investigated using density functional theory calculations. The Ru and Os nanoparticles exhibited similar shapes, while that of Rh differed significantly. For all metal species, step sites appeared at nanoparticle diameters (d) >2–4 nm. The calculated activation barriers (Ea) were small at step sites, and Ru and Os step sites exhibited similar Ea values despite the former having a higher turnover frequency. This is likely due to the surface coverage of vacant sites being higher on Ru. Although the increase in NH3 synthesis rate at d = 2–4 nm was common to Ru, Os, and Rh, the reaction rates decreased in the order: Ru > Os > Rh. Our results show that Ea values, surface vacant sites, and the number of step sites are important factors for NH3 synthesis. The Ru nanoparticles exhibited high activity due to satisfying all three factors.

Keywords: functional theory; density functional; synthesis; step sites

Journal Title: Journal of Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.