LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction

Photo from wikipedia

Abstract Iron-nitrogen-carbon (Fe-N-C) materials as the most promising non-precious metal catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts are in high demand for large scale application of fuel… Click to show full abstract

Abstract Iron-nitrogen-carbon (Fe-N-C) materials as the most promising non-precious metal catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts are in high demand for large scale application of fuel cells. However, their activity and durability are still critical issues. Development of Fe/N/C-containing precursors is a straightforward strategy for obtaining advanced Fe-N-C ORR catalysts to address these issues. Herein, we report an advanced Fe-N-C catalyst with a hybrid structure of single Fe atom sites (Fe-Nx moieties) and exposed Fe carbides/nitrides nanodots with diameters

Keywords: level design; oxygen reduction; design catalysts; catalysts derived; reduction; molecular level

Journal Title: Journal of Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.