LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol

Photo by thinkmagically from unsplash

Abstract The effect of particle size for Ni nanoparticles supported on β-Ga2O3 was investigated for CO2 hydrogenation to methanol at 0.5 MPa. Model Ni nanoparticles ranging from 3.3 to 10.2 nm were… Click to show full abstract

Abstract The effect of particle size for Ni nanoparticles supported on β-Ga2O3 was investigated for CO2 hydrogenation to methanol at 0.5 MPa. Model Ni nanoparticles ranging from 3.3 to 10.2 nm were synthesized using the hot injection method by controlling the reaction temperature and time. The smallest Ni nanoparticles (3.3 nm) showed the highest catalytic activity across the entire temperature range and the largest Ni nanoparticles (10.2 nm) showed the highest methanol selectivity. The apparent activation energies for methanol with Ni nanoparticles increased from 6.0 to 18.4 kcal mol−1 as the nanoparticle size increased. Furthermore, it was found that the smallest Ni nanoparticles favor the reverse water gas shift reaction. In situ DRIFT analysis revealed that the gallium oxide itself could produce an intermediate species and the addition of Ni on the oxide support increases the hydrogenation rate. The Ni supported catalysts showed a CO peak, but the smallest Ni nanoparticles showed a larger CO peak than that for the largest Ni nanoparticles, which clearly supports that the smaller nanoparticles favor the reverse water gas shift reaction.

Keywords: model; hydrogenation methanol; co2 hydrogenation; hydrogenation; size

Journal Title: Journal of Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.