LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting levulinic acid hydrogenation to value-added 1,4-pentanediol using microwave-assisted gold catalysis

Photo by sharonmccutcheon from unsplash

Abstract Microwave (MW) -assisted levulinic acid (LA) hydrogenation has been performed over two gold catalysts (commercial 1 wt% Au/TiO2 by AUROlite™ and 2.5 wt% Au/ZrO2, prepared using deposition-precipitation). MW-assisted LA hydrogenation was… Click to show full abstract

Abstract Microwave (MW) -assisted levulinic acid (LA) hydrogenation has been performed over two gold catalysts (commercial 1 wt% Au/TiO2 by AUROlite™ and 2.5 wt% Au/ZrO2, prepared using deposition-precipitation). MW-assisted LA hydrogenation was carried out in water and in solvent-free conditions via (i) H-transfer and (ii) molecular H2. Au/TiO2 promoted complete LA conversion and the further reduction of the produced GVL to 1,4-pentanediol (1,4-PDO) in the presence of 50 bar H2 at 150 °C (4-hour reaction). Interestingly, selectivity to 1,4-PDO was complete at 200 °C. Extended characterisation highlighted the cooperative role played by the gold nanoparticles and the support, onto which activated hydrogen atoms spillover to react with LA. This results in the remarkable activity of Au/TiO2. Both catalysts showed structural and morphological stability under reaction conditions. It was possible to reactivate the Au/TiO2 catalyst by MW-assisted oxidation, paving the way for catalyst recycling directly inside the MW reactor.

Keywords: microwave assisted; hydrogenation; levulinic acid; acid hydrogenation

Journal Title: Journal of Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.