LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction

Photo from wikipedia

Abstract The amorphous Co-Ce binary metal oxides Co1-yCeyOx prepared by the photochemical metal–organic deposition (PMOD) method is developed as high performance electrocatalysts for oxygen evolution reaction (OER). The influence of… Click to show full abstract

Abstract The amorphous Co-Ce binary metal oxides Co1-yCeyOx prepared by the photochemical metal–organic deposition (PMOD) method is developed as high performance electrocatalysts for oxygen evolution reaction (OER). The influence of Ce content on the OER activity is investigated in terms of geometric and electronic factors. Ce can remarkably enhance the OER activity of CoOx due to the synergistic effect of surface area, Co3+ content, and metal-OH bond strength when the content of Ce is less than 60%. Co0.9Ce0.1Ox supported on fluorine-doped tin oxide (FTO) coated glass substrate shows overpotential of 320 (2) mV at 10 mA cm−2 in 1 M KOH solution. The OER mechanism exploration reveals that the rate determining step changes with the Ce content due to the variation of metal-OH bond strength. This work sheds light on the design of high-performance yet cost-effective OER catalysts.

Keywords: oxygen evolution; metal; metal oxides; binary metal; high performance

Journal Title: Journal of Catalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.