LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ethylene hydrogenation on supported Pd nanoparticles: Influence of support on catalyst activity and deactivation

Photo from wikipedia

Abstract Palladium based systems are used extensively in a wide range of catalytic hydrogenation reactions. Here, electronic modifications of two amorphous SiO2 thin films are used to influence the properties… Click to show full abstract

Abstract Palladium based systems are used extensively in a wide range of catalytic hydrogenation reactions. Here, electronic modifications of two amorphous SiO2 thin films are used to influence the properties of supported Pd nanoparticles (≈1 nm). Negative charging of the metal particles leads to destabilization of both, surface and subsurface hydrogen species, whereas positive charging leads to stabilization of both hydrogen species as evidenced by temperature-programmed desorption (TPD) measurements. The impact of this finding for general hydrogenation reactions is illustrated for ethylene hydrogenation at 300 K using a pulsed molecular beam technique, where an increase in turnover frequency (TOF) over one order of magnitude is observed for positively charged particles, compared to negative ones. The difference in hydrogenation TOF can be rationalized by two reasons: (i) increased hydrogen coverage on the metal surface due to stabilization and (ii) reduction in activation barrier for hydrogenation, both caused by metal-support interactions. In addition, the active phase of the metal particles during catalysis is proposed to be influenced by two mechanisms, formation of a carbide phase and a dehydrogenated carbonaceous overlayer on the surface.

Keywords: nanoparticles influence; supported nanoparticles; support; hydrogenation supported; ethylene hydrogenation; hydrogenation

Journal Title: Journal of Catalysis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.