LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes.

Photo from wikipedia

Nitrogen-doped hierarchical porous carbons (NHPCs) with controllable nitrogen content were prepared via a template-free method by direct carbonization of melamine-resorcinol-terephthaldehyde networks. The synthetic approach is facile and gentle, resulting in… Click to show full abstract

Nitrogen-doped hierarchical porous carbons (NHPCs) with controllable nitrogen content were prepared via a template-free method by direct carbonization of melamine-resorcinol-terephthaldehyde networks. The synthetic approach is facile and gentle, resulting in a hierarchical pore structure with modest micropores and well-developed meso-/macropores, and allowing the easy adjusting of the nitrogen content in the carbon framework. The micropore structure was generated within the highly cross-linked networks of polymer chains, while the mesopore and macropore structure were formed from the interconnected 3D gel network. The as-prepared NHPC has a large specific surface area of 1150m2·g-1, and a high nitrogen content of 14.5wt.%. CO2 adsorption performances were measured between 0°C and 75°C, and a high adsorption capacity of 3.96mmol·g-1 was achieved at 1bar and 0°C. Moreover, these nitrogen-doped hierarchical porous carbons exhibit a great potential to act as electrode materials for supercapacitors, which could deliver high specific capacitance of 214.0F·g-1 with an excellent rate capability of 74.7% from 0.1 to 10 A·g-1. The appropriate nitrogen doping and well-developed hierarchical porosity could accelerate the ion diffusion and the frequency response for excellent capacitive performance. This kind of new nitrogen-doped hierarchical porous carbons with controllable hierarchical porosity and chemical composition may have a good potential in the future applications.

Keywords: nitrogen; adsorption; nitrogen doped; hierarchical porous; doped hierarchical; porous carbons

Journal Title: Journal of colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.