LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine.

Photo from wikipedia

Structurally well-defined assemblies of silver nanoparticles, including the dendritic nano-flowers (NFs), planar nano-spheres (NSs) and nano-dendrites (NDs) were obtained by a surfactant-free and ultrafast (≈15min) self-assembly process on as-purchased carbon-coated… Click to show full abstract

Structurally well-defined assemblies of silver nanoparticles, including the dendritic nano-flowers (NFs), planar nano-spheres (NSs) and nano-dendrites (NDs) were obtained by a surfactant-free and ultrafast (≈15min) self-assembly process on as-purchased carbon-coated copper TEM grids. The silver nano-assemblies, especially the NFs modified TEM grids, when serving as surface-enhanced Raman spectroscopy (SERS) substrates for detecting melamine molecules, demonstrated a long-lived limit of detection (LOD) of as low as 10-11M, suggesting the potential of these silver-assemblies modified carbon-coated copper grids as novel potable and cost-effective SERS substrates for trace detection toward various food contaminants like melamine.

Keywords: carbon coated; detection; self assembly; coated copper

Journal Title: Journal of colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.