LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N-doped nanoporous carbon as efficient catalyst for nitrobenzene reduction in sulfide-containing aqueous solutions.

Photo from wikipedia

Metal-free N-doped porous carbon (NC) materials have been demonstrated to be promising catalysts in contaminated environment remediation. Two NC materials (NC-1 and NC-2) were prepared by sol-gel routes. Their catalytic… Click to show full abstract

Metal-free N-doped porous carbon (NC) materials have been demonstrated to be promising catalysts in contaminated environment remediation. Two NC materials (NC-1 and NC-2) were prepared by sol-gel routes. Their catalytic properties were investigated for the reduction of nitrobenzene (NB) in sulfide-containing aqueous solution. Both NC-1 and NC-2 can efficiently catalyze the reduction of NB to aniline (AN) under ambient conditions, but also can be reused for more than 5 times. The reaction fits excellently to the pseudo-first-order kinetic. Compared with NC-1 material, NC-2 shows much higher removal efficiency (rate constant kobs: 0.283h-1vs. 2.50h-1). The important features of NC material, including high specific surface area, suitable surface functional groups (especially nitrogen-containing groups), and enhanced electron transfer ability, should be mainly factors for its excellent catalytic activity. This work demonstrates that N-doped carbon materials have great potential for degradation of NB to AN in the natural aquatic environment.

Keywords: reduction; sulfide containing; carbon; containing aqueous; doped nanoporous

Journal Title: Journal of colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.