LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of hydrophobicity distribution of particle mixtures on emulsion stabilization.

Photo from wikipedia

Whilst emulsions stabilized by uniform particles are well established, the emulsification behavior of heterogeneous mixtures of particles with varying hydrophobicity is rarely examined. Consequently, the influence of the distribution of… Click to show full abstract

Whilst emulsions stabilized by uniform particles are well established, the emulsification behavior of heterogeneous mixtures of particles with varying hydrophobicity is rarely examined. Consequently, the influence of the distribution of particle hydrophobicity on oil-water emulsion stabilization is poorly understood. In the present work, the wettability of the bitumen froth fine solids from Alberta oil sands was studied by film flotation and toluene-water emulsification tests, before and after a hydrothermal treatment at 300-420°C. This approach provided a series of populations of particles with different distributions of hydrophobicity. The initial fine particles in the bitumen froth had a critical surface tension ranging from 26 to 56mN/m, with a mean value of 39mN/m. Hydrothermal treatment at 300-420°C progressively shifted the hydrophobicity distribution of the fine particles, resulting in a lower mean critical surface tension and a narrower critical surface tension range. The emulsifying capacity of the fine particle mixtures, as indicated by the volume of the produced toluene-water emulsions, was unrelated to the mean critical surface tension. Instead, emulsification depended on the proportion of a specific sub-fraction of particles with a critical surface tension of 27-30mN/m. This sub-fraction of particles, with intermediate hydrophobicity, dominated the emulsification behavior of the particle mixtures.

Keywords: critical surface; particle; surface tension; particle mixtures; hydrophobicity; distribution

Journal Title: Journal of colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.