LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-covalent assembly of poly(allylamine hydrochloride)/triethylamine microcapsules with ionic strength-responsiveness and auto-fluorescence.

Photo by majesticlukas from unsplash

Ionic strength-responsive microcapsules with auto-fluorescence were fabricated by incubation of poly(allylamine hydrochloride) (PAH)-doped CaCO3 particles in triethylamine (Et3N), followed by core removal using HCl. Based on the combination of hydrophobic… Click to show full abstract

Ionic strength-responsive microcapsules with auto-fluorescence were fabricated by incubation of poly(allylamine hydrochloride) (PAH)-doped CaCO3 particles in triethylamine (Et3N), followed by core removal using HCl. Based on the combination of hydrophobic interaction and hydrogen bonding, PAH and Et3N formed a complex with a molar ratio of 3:1 (repeating unit of PAH: Et3N). The as-prepared capsules showed extraordinary stability against 1M HCl, 1M NaOH and 6M urea solutions, and could swell or shrink reversibly in response to the ionic strength. Furthermore, the capsules possessed auto-fluorescence, allowing easily tracking of capsules during applications. Such interaction may be expanded to formation of stimuli-responsive multilayer films and other colloidal particles.

Keywords: poly allylamine; auto fluorescence; ionic strength

Journal Title: Journal of colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.