LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defect-free surface modification methods for solubility-tunable carbon nanotubes.

Photo from wikipedia

Although carbon nanotubes (CNTs) have outstanding physical properties, there are still challenging issues such as poor dispersibility and miscibility between organic polymers and CNTs for polymer nanocomposites. Chemical modifications (e.g.,… Click to show full abstract

Although carbon nanotubes (CNTs) have outstanding physical properties, there are still challenging issues such as poor dispersibility and miscibility between organic polymers and CNTs for polymer nanocomposites. Chemical modifications (e.g., strong acid based oxidation, carboxylation, etc.) can improve dispersion properties and compatibility, but such surface modification methods often lead to damage to the pristine CNT structure and also deteriorate the mechanical properties of CNTs. Here we demonstrate a simple, defect-free and scalable method for well-dispersed CNTs in common organic solvents, using dopamine and amine-terminated polyethylene glycol derivatives. This method makes it possible to prepare solubility-tunable CNTs without any severe structural deformation. As-modified CNTs were successfully characterized by thermal gravimetric analysis (TGA), Fourier-transformed infrared spectroscope (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The surface modified-CNTs were well-dispersed in polar and/or non-polar common solvents. The well-dispersed CNTs can be used in a nanofiller in commercial polymers such as thermoplastic polyurethane (TPU) polymer. The CNT/TPU composite showed improved tensile strength without sacrificing elongation at break relative to those of pristine TPU.

Keywords: solubility tunable; defect free; carbon nanotubes; modification methods; surface modification

Journal Title: Journal of colloid and interface science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.