LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liquid marble formation and solvent vapor treatment of the biodegradable polymers polylactic acid and polycaprolactone.

Photo by schluditsch from unsplash

Liquid Marbles were produced by rolling aqueous droplets on a powder bed of biodegradable polymers, namely polylactic acid (PLA), polycaprolactone (PCL) and blends of these. Solvent vapor treatment was subsequently… Click to show full abstract

Liquid Marbles were produced by rolling aqueous droplets on a powder bed of biodegradable polymers, namely polylactic acid (PLA), polycaprolactone (PCL) and blends of these. Solvent vapor treatment was subsequently applied with dichloromethane (DCM). This treatment aligned the polymer chains in order to form a smooth polymeric shell with enhanced mechanical and barrier properties. Whilst a wide range of potential applications for Liquid Marbles exists, the aim here is to encapsulate a solution containing a fertilizer, i.e. urea to produce a controlled release fertilizer. The influences of droplet volume, polymer particle size and solvent vapor treatment time on the liquid marble properties were investigated. Crystallinity and thermal properties were analyzed by differential scanning calorimetry (DSC), surface characteristics and shell thickness by scanning electron microscopy (SEM), mechanical strength and elasticity by compression tests and evaporation rates by thermogravimetric analysis (TGA).

Keywords: treatment; biodegradable polymers; polylactic acid; solvent vapor; vapor treatment

Journal Title: Journal of colloid and interface science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.