LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate).

Photo by anniespratt from unsplash

HYPOTHESIS Complex coacervates are capable of easily partitioning solutes within them based on relative affinities of solute-water and solute-polyelectrolyte pairs, as the coacervate phase has low surface tension with water,… Click to show full abstract

HYPOTHESIS Complex coacervates are capable of easily partitioning solutes within them based on relative affinities of solute-water and solute-polyelectrolyte pairs, as the coacervate phase has low surface tension with water, facilitating the transport of small molecules into the coacervate phase. The uptake of small molecules is expected to influence the physicochemical properties of the complex coacervate, including the hydrophobicity within coacervate droplets, phase boundaries of coacervation and precipitation, solute uptake capacity, as well as the coacervate rheological properties. EXPERIMENTS Phase behavior of aqueous solutions of poly(diallyldimethylammonium chloride) (PDAC) and poly(sodium 4-styrene sulfonate) (SPS) was investigated in the presence of various concentrations of two different dyes, positively charged methylene blue (MB) or non-charged bromothymol blue (BtB), using turbidity measurements. These materials were characterized with UV-vis spectroscopy, zeta potential measurements, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and dynamic rheological measurements. FINDINGS The presence of MB or BtB accelerates the coacervation process due to the increased hydrophobicity within coacervates by the addition of MB or BtB. The encapsulated MB or BtB tends to reduce the ionic crosslink density in the PDAC-SPS coacervates, resulting in a much weaker interconnecting network of the PDAC-SPS coacervates.

Keywords: small molecules; aqueous solutions; solutions poly; spectroscopy; phase behavior; coacervation

Journal Title: Journal of colloid and interface science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.