LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-performance supercapacitor based on three-dimensional flower-shaped Li4Ti5O12-graphene hybrid and pine needles derived honeycomb carbon.

Photo by saffu from unsplash

A three-dimensional (3D) flower-shaped Li4Ti5O12-graphene (Gr) hybrid micro/nanostructures and pine needles derived carbon nanopores (PNDCN) has been prepared by using the effective hydrothermal process. Due to the unique micro/nanostructures which… Click to show full abstract

A three-dimensional (3D) flower-shaped Li4Ti5O12-graphene (Gr) hybrid micro/nanostructures and pine needles derived carbon nanopores (PNDCN) has been prepared by using the effective hydrothermal process. Due to the unique micro/nanostructures which can provide abundant surface active sites, the obtained 3D Li4Ti5O12-Gr displays a high specific capacitance of 706.52 F g-1 at 1 A g-1. The prepared PNDCN also exhibits high specific capacitance of 314.50 F g-1 at 1 A g-1 benefiting from its interconnected honeycomb-like hierarchical and open structure, which facilitates the diffusion and reaction of electrolyte ions and enables an isotropic charging/discharging process. An asymmetric supercapacitor utilizing Li4Ti5O12-Gr as positive electrode and PNDCN as negative electrode has been fabricated, it delivers a high energy density of 35.06 Wh kg-1 at power density of 800.08 W kg-1 and outstanding cycling stability with 90.18% capacitance retention after 2000 cycles. The fabrication process presented in this work is facile, cost-effective, and environmentally benign, offering a feasible solution for manufacturing next-generation high-performance energy storage devices.

Keywords: three dimensional; shaped li4ti5o12; dimensional flower; graphene hybrid; flower shaped; li4ti5o12 graphene

Journal Title: Journal of colloid and interface science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.