LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of visible-light-driven silver iodide modified iodine-deficient bismuth oxyiodides Z-scheme heterojunctions with enhanced photocatalytic activity for Escherichia coli inactivation and tetracycline degradation.

Photo from wikipedia

At present, various organic pollutants and pathogenic microorganisms presented in wastewater have severely threatened aquatic ecosystem and human health. Meanwhile, semiconductor photocatalysis technology for water purification has attracted increasingly significant… Click to show full abstract

At present, various organic pollutants and pathogenic microorganisms presented in wastewater have severely threatened aquatic ecosystem and human health. Meanwhile, semiconductor photocatalysis technology for water purification has attracted increasingly significant attention. Herein, we successfully constructed a series of novel visible-light-driven (VLD) Bi4O5I2/AgI hybrid photocatalysts with different AgI amounts. Compared with pristine AgI and Bi4O5I2, Bi4O5I2/AgI with the optimal AgI contents exhibited remarkably enhanced photocatalytic performance in probe experiment for Escherichia coli (E. coli) disinfection and tetracycline (TC) degradation. The efficiency for TC degradation and E. coli inactivation reached 82% and 100% in 30 min, respectively. The enhanced electron-hole separation efficiency was responsible for improved photocatalytic activity. In addition, the destruction process of the chemical structure of TC molecules was further investigated by three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs). The activity and crystal phase of the catalysts did not change significantly after four cycles, demonstrating their excellent recyclability and stability of catalysts. The Ag+ ion leaking experiments, radical trapping experiments and ESR tests demonstrated that OH, O2- and h+ were the main active species in photocatalytic disinfection processes. Furthermore, the photocatalytic mechanism of Bi4O5I2/AgI nanomaterials was discussed in detail in conjunction with the energy band structure, and a reasonable Z-scheme interfacial charge transfer mechanism was proposed. This work is expected to provide an efficient water disinfection method.

Keywords: degradation; visible light; coli; light driven; agi; activity

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.