LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flow-induced concentration gradients in shear-banding of branched wormlike micellar solutions.

Photo by leelashyam from unsplash

HYPOTHESIS Shear-banding of branched wormlike solutions is a topic of active investigation which has not been fully elucidated. Here, we surmise that flow-induced microstructuring in the shear banding regime is… Click to show full abstract

HYPOTHESIS Shear-banding of branched wormlike solutions is a topic of active investigation which has not been fully elucidated. Here, we surmise that flow-induced microstructuring in the shear banding regime is associated with spatial concentration gradients. EXPERIMENTS The experiments focus on the flow-induced behavior of a CTAB/NaSal wormlike micellar system. A unique approach based on a microfluidic-spitter geometry, combined with particle-image velocimetry and high-speed video microscopy, is used to separate the streams flowing out from the core and the near wall zones of the microchannel. FINDINGS Here, we present the first direct experimental evidence of the correlation between phase separation and shear banding. By increasing the pressure-drop across a microcapillary, the onset of a grainy texture close to the wall, showing a flow-induced demixing effect, is observed. We use a splitter to measure effluent streams from the center and the near-wall zones in terms of viscosity, conductance and dry mass. We observe that phase-separation induced by the flow correlates with chemical concentration gradients. This confirms our hypothesis that shear-induced local de-mixing of the system is strongly related to chemical concentration gradients.

Keywords: branched wormlike; shear banding; concentration gradients; flow induced; banding branched

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.