Nanoporous Si@TiO2 composites with the unique core-shell architecture are conveniently fabricated through one-step selective dealloying of SiTiAl ternary alloy under mild conditions. The as-prepared composites consist of bimodal Si network… Click to show full abstract
Nanoporous Si@TiO2 composites with the unique core-shell architecture are conveniently fabricated through one-step selective dealloying of SiTiAl ternary alloy under mild conditions. The as-prepared composites consist of bimodal Si network skeleton as the core and interconnected TiO2 nanosponge layer as the shell uniformly distribute on the Si surface to form the porous core-shelled structure. The nanoporous TiO2 as the outer protective layer not only reduce the violent volume change of electrode materials for stable cycling performance but also shorten the diffusion distance of Li+ for high rate capacities. The inner bimodal porous Si possesses an open bicontinuous network structure that can provide the enough empty space and robust backbone to relax the volume variation of composite and guarantee the sufficient electrode-electrolyte contact area. As a result, the optimized nanoporous Si@TiO2 composite delivers the reversible capacity of 1338.1 and 1174.4 mA h g-1 at the current densities of 200 and 1000 mA g-1 after continuous tests for 120 and 100 cycles, respectively. With the advantages of easy preparation, unique architecture, and high lithium storage performances, the porous core-shelled Si@TiO2 composites demonstrate the promising application potential as an anode material for LIBs.
               
Click one of the above tabs to view related content.