LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of porous graphene electrodes via CO2 activation for the enhancement of capacitive deionization.

Photo by elevatebeer from unsplash

Capacitive deionization (CDI) is a simple, cost-efficient and environmentally-friendly method for brackish water desalination. In order to improve the desalination performance, the inner structures of the porous electrodes should provide… Click to show full abstract

Capacitive deionization (CDI) is a simple, cost-efficient and environmentally-friendly method for brackish water desalination. In order to improve the desalination performance, the inner structures of the porous electrodes should provide more space for ion storage and transportation. Therefore, we utilized an efficient method to synthesize porous graphene electrodes based on the technique of pressurized oxidation and CO2 activation. The prepared electrodes were characterized electrochemically by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy, and the desalination performance between different samples was compared as well. These results showed that AGE-30 had the highest electrosorption capacity (6.26 mg/g) among all samples, and this was attributed to its high specific surface area (898 m2/g), high pore volume (1.223 cm3/g), high specific capacitance (56.21F/g), and smaller inner resistance. Thus, the CO2 activation is confirmed to be a useful method for the enhancement of the graphene electrodes for CDI.

Keywords: graphene electrodes; porous graphene; co2 activation; capacitive deionization

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.