LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dendritic surface patterns from Bénard-Marangoni instabilities upon evaporation of a reactive ZnO nanofluid droplet: A fractal dimension analysis.

Photo from wikipedia

We present a box counting fractal dimension (FD) analysis of the dendritic patterns obtained under conditions far from equilibrium via rapid evaporation of a sessile drop containing reactive ZnO nanoparticles.… Click to show full abstract

We present a box counting fractal dimension (FD) analysis of the dendritic patterns obtained under conditions far from equilibrium via rapid evaporation of a sessile drop containing reactive ZnO nanoparticles. These dendrites were manifestations of solidified Bénard-Marangoni (BM) instability convection cells, and we previously noted that their complex hierarchical morphologies were superficially analogous to the foliage of red algae, Spanish dagger, or spider plant. The fractal dimension of the Bénard-Marangoni dendrites was found to vary in the range of 1.77-1.89 and also depend on the size of the Bénard-Marangoni cells. These fractal dimension results were correlated with the morphological details of the Bénard-Marangoni cells and ZnO particle characteristics, providing a quantitative description of such complex surface patterns emerging from the dynamic process of the Bénard-Marangoni instability.

Keywords: surface patterns; reactive zno; dimension analysis; nard marangoni; fractal dimension

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.