A thermo-responsive amphiphile was developed from oligo-phenylalanine [oligo(Phe)]. The hydrophobic moiety of the amphiphile, oligo(Phe) was synthesized via reverse hydrolysis catalyzed by bromelain in dimethyl sulfoxide and dioxane solutions. The… Click to show full abstract
A thermo-responsive amphiphile was developed from oligo-phenylalanine [oligo(Phe)]. The hydrophobic moiety of the amphiphile, oligo(Phe) was synthesized via reverse hydrolysis catalyzed by bromelain in dimethyl sulfoxide and dioxane solutions. The production of oligo(Phe) increased by 80.7% by screening suitable reaction conditions. The average degree of polymerization of oligo(Phe) was determined to be four by 1H NMR. By grafting with aldehyde-ended methoxypolyethylene glycol (mPEG), oligo(Phe) was converted to amphiphilic oligo(Phe)-mPEG. The surface tension of oligo(Phe)-mPEG solution increased with decreasing chain length of the mPEG moiety. Cytotoxicity studies showed oligo(Phe)-mPEGs are biocompatible. On varying temperature, a reversible phase transition of oligo(Phe)-mPEG solutions could be observed. N-octane-in-water emulsions and 0.5% beta-carotene containing squalene-in-water emulsions stabilized by oligo(Phe)-mPEGs occurred at 25 °C but de-emulsification took place at >40 °C. Emulsification could be restored once the separated mixture cooled and re-homogenized. The emulsification/de-emulsification cycling could be repeated many times. The time required for de-emulsification decreased with elevated temperature but increased with a reduced concentration of oligo(Phe)-mPEGs and a reduction in the chain length of the mPEG moiety.
               
Click one of the above tabs to view related content.