LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-pot synthesis of highly branched Pt@Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction.

Photo from wikipedia

Herein, highly branched Pt@Ag core-shell nanoparticles (Pt@Ag NPs) were fabricated by a facile one-pot wet-chemical approach, where poly(ethyleneimine) (PEI) served as structure-directing and capping agents. Their structure, morphology and composition… Click to show full abstract

Herein, highly branched Pt@Ag core-shell nanoparticles (Pt@Ag NPs) were fabricated by a facile one-pot wet-chemical approach, where poly(ethyleneimine) (PEI) served as structure-directing and capping agents. Their structure, morphology and composition were mainly characterized by a set of techniques. And their growth mechanism was discussed in some detail. The prepared catalyst exhibited remarkable enhancement in catalytic activity of 4-nitrophenol (4-NP) reduction as a proof-of-concept application, surpassing commercial Pt black and home-made Ag NPs catalysts. Also, the as-obtained catalyst showed superior stability without sacrificing the catalytic activity. These observations endow the catalyst possibility for practical applications in nitrophenols environmental remediation.

Keywords: core shell; branched core; shell nanoparticles; highly branched; one pot; catalyst

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.