Herein, highly branched Pt@Ag core-shell nanoparticles (Pt@Ag NPs) were fabricated by a facile one-pot wet-chemical approach, where poly(ethyleneimine) (PEI) served as structure-directing and capping agents. Their structure, morphology and composition… Click to show full abstract
Herein, highly branched Pt@Ag core-shell nanoparticles (Pt@Ag NPs) were fabricated by a facile one-pot wet-chemical approach, where poly(ethyleneimine) (PEI) served as structure-directing and capping agents. Their structure, morphology and composition were mainly characterized by a set of techniques. And their growth mechanism was discussed in some detail. The prepared catalyst exhibited remarkable enhancement in catalytic activity of 4-nitrophenol (4-NP) reduction as a proof-of-concept application, surpassing commercial Pt black and home-made Ag NPs catalysts. Also, the as-obtained catalyst showed superior stability without sacrificing the catalytic activity. These observations endow the catalyst possibility for practical applications in nitrophenols environmental remediation.
               
Click one of the above tabs to view related content.