LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calorimetric study of the influence of aluminum substitution in ferrihydrite on sulfate adsorption and reversibility.

Photo by aaronburden from unsplash

Ferrihydrite (Fh) is a nanocrystalline iron (hydr)oxide pervasive in various surface environments. It has high specific surface areas and high density of reactive surface-sites, both of which properties impart a… Click to show full abstract

Ferrihydrite (Fh) is a nanocrystalline iron (hydr)oxide pervasive in various surface environments. It has high specific surface areas and high density of reactive surface-sites, both of which properties impart a consequential role in determining the fate and transport of environmental nutrients and contaminants. In natural environments, Fh readily reacts with impurities, such as aluminum (Al) and has variable substituted chemical compositions and surface properties. This work examines the effect of aluminum (Al) incorporation (0%, 12% and 24 mol% Al) on the interaction energy of chloride (Cl-) and nitrate (NO3-), and adsorption/desorption of sulfate (SO42-) onto Fh. Microcalorimetry experiments were conducted at pHs 3.0 and 5.6, along with a detailed characterization of all samples. Results showed a significant increase in the energetics of the exothermic peak of NO3- and the endothermic peak of Cl- with increasing Al concentration and decreasing pH values. Furthermore, the exothermic heat of exchange, adsorption, irreversibility and fraction of inner-sphere complexes for sulfate interaction with Fh increased with more Al concentration and acidic pH.

Keywords: adsorption; sulfate; calorimetric study; surface; aluminum; study influence

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.