LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanodiamonds and surfactants in water: Hydrophilic and hydrophobic interactions.

Photo from archive.org

HYPOTHESIS Nanodiamonds, one of the most promising nanomaterials for the use in biomedicine, placed in the organisms are bound to interact with various amphiphilic lipids and their micelles. However, while… Click to show full abstract

HYPOTHESIS Nanodiamonds, one of the most promising nanomaterials for the use in biomedicine, placed in the organisms are bound to interact with various amphiphilic lipids and their micelles. However, while the influence of surfactants, the close relative of lipids, on the properties of colloidal nanodiamonds is well studied, the influence of nanodiamonds on the properties of surfactants, lipids, and, therefore, on the structure of surrounding tissues, is poorly understood. EXPERIMENT In this work, the influence of interactions of hydrophobic and hydrophilic nanodiamonds with ionic surfactant sodium octanoate in water on hydrogen bonds, the properties of the surfactant and micelle formation were studied using Raman spectroscopy and dynamic light scattering technique. FINDINGS Nanodiamonds are found to actively influence the bulk properties only of the premicellar surfactant solutions: the strength of hydrogen bonds, ordering and conformation of hydrocarbon tails, the critical micelle concentration. This influence is deduced to be dependent on two mechanisms not unique to nanodiamonds: (1) the induction of micro-flows around nanoparticles undergoing Brownian motions, and (2) the creation of the chaotic state in the surfactant solutions if two or more incompatible types of interactions between nanoparticles' surfaces and surfactants are similarly favorable, e.g. hydrophobic interaction and Coulomb attraction.

Keywords: surfactants water; water hydrophilic; water; nanodiamonds surfactants; hydrophilic hydrophobic; influence

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.