LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of solution composition on fouling of anion exchange membranes desalinating polymer-flooding produced water.

Photo from wikipedia

HYPOTHESIS Anion exchange membranes (AEMS) are particularly prone to fouling when employed to desalinate polymer flooding produced water (PFPW), an abundant sub-product from the oil and gas industry. The formation… Click to show full abstract

HYPOTHESIS Anion exchange membranes (AEMS) are particularly prone to fouling when employed to desalinate polymer flooding produced water (PFPW), an abundant sub-product from the oil and gas industry. The formation of fouling on an AEM will be affected by the composition of the solution, which includes various dissolved salts, partially hydrolyzed polyacrylamide (HPAM), crude oil, and surfactants. EXPERIMENTS Electrodialysis experiments were performed to desalinate feed solutions with different compositions, aiming to distinguish between their individual and combined effects. The solutions contained diverse mono- and divalent ions. The analysis included data collected during the desalination and characterization of the fouled AEMs by diverse analytical techniques. FINDINGS HPAM produced the most severe effects in terms of visible fouling and increase of resistance. This polyelectrolyte fouls the AEM by adsorbing on its surface and by forming a viscous gel layer that hampers the replenishment of ions from the bulk solution. Ca and Mg have a large influence on the formation of thick HPAM gel layers, while the oily compounds have only a minimal influence acting mainly as a destabilizing agent. The membranes also presented scaling consisting of calcium precipitates. The effects of the gel layer were minimized by applying current reversal and foulant-free solution.

Keywords: flooding produced; anion exchange; solution; polymer flooding; influence; exchange membranes

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.