LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pore-scale visualization and characterization of viscous dissipation in porous media.

Photo by johnschno from unsplash

HYPOTHESIS The effects of mutual transfer of momentum between two immiscible flowing fluids in porous media are not well understood nor predictable yet. From considerations at the pore-scale, it should… Click to show full abstract

HYPOTHESIS The effects of mutual transfer of momentum between two immiscible flowing fluids in porous media are not well understood nor predictable yet. From considerations at the pore-scale, it should be possible to determine whether and to what extent interfacial viscous coupling effects are significant. EXPERIMENTS We visualize the velocity distributions inside immobile globules of wetting phase (water) while a non-wetting phase (oil) is injected. We investigate viscous coupling effects and their relationship with the viscosity ratio and the capillary number. FINDINGS Four regimes of viscous dissipation are identified: (i) a regime for which the fluid-fluid interface acts as a solid wall; (ii) a regime where the wetting phase is dragged in the direction of the imposed flow; (iii) and (iv) two regimes for which the trapped globule of water shows a recirculating motion due to the shear stress at the oil/water interface. We demonstrate the significant role of the lubricating effect and of the topology of the pore space on the magnitude of viscous dissipation. Importantly, for a viscosity ratio close to one and low capillary number, we demonstrate that viscous coupling effects should be incorporated into the existing Darcy's law formulation for two-phase flow in porous media.

Keywords: viscous coupling; viscous dissipation; coupling effects; porous media; pore scale

Journal Title: Journal of colloid and interface science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.