Rational construction of MnCo2O4-based core-shell nanomaterials with distinctive and desirable architectures possesses great potential in the advanced electrode material of high-performance supercapacitors. Here, a new class of hierarchical core-shell nanowire… Click to show full abstract
Rational construction of MnCo2O4-based core-shell nanomaterials with distinctive and desirable architectures possesses great potential in the advanced electrode material of high-performance supercapacitors. Here, a new class of hierarchical core-shell nanowire arrays (NWAs) with a shell of NiWO4 nanoparticles and a core of MnCo2O4 nanowires is reported, which can significantly improve the electrochemical energy storage properties of supercapacitors. The unique core-shell structure endows the MnCo2O4@NiWO4 NWAs electrode with a high areal specific capacitance of 5.09 F cm-2 at a current density of 1 mA cm-2 and a superior cyclic retention of 96% after 5000 charge-discharge cycles, which are more preferable than those of MnCo2O4 NWAs electrode. More importantly, an aqueous electrochemical energy storage device (core-shell MnCo2O4@NiWO4 NWAs as the positive electrode and active carbon as the negative electrode, MnCo2O4@NiWO4//AC ASC) was assembled and shows a high energy density of 0.23 mWh cm-2 at a power density of 2.66 mW cm-2, and 0.09 mWh cm-2 at 16.00 mW cm-2, indicating hopeful potential for practical applications. This work highlights the significance of NiWO4 as a shell for hierarchical core-shell nanostructures, which can further improve the electron transport characteristic of the electrode material, thereby achieving performance breakthroughs in energy storage devices.
               
Click one of the above tabs to view related content.