LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A positively charged calcite surface model for molecular dynamics studies of wettability alteration.

Photo from wikipedia

A new model for a positively charged calcite surface was developed to allow realistic molecular dynamics studies of wettability alteration on carbonate rocks. The surface charge was introduced in a… Click to show full abstract

A new model for a positively charged calcite surface was developed to allow realistic molecular dynamics studies of wettability alteration on carbonate rocks. The surface charge was introduced in a manner consistent with the underlying calcite geochemistry and with the conclusions of recent quantum mechanical studies. The simulations using the new surface model demonstrate that the experimentally observed wettability behavior of calcite is represented correctly. In particular, the model surface became oil-wet due to the adsorption of the carboxylate species. Furthermore, the oil-wet conditions were reversed more effectively by a cationic surfactant than by an anionic one, in agreement with the majority of experimental observations. Finally, with simulated smart water, the well-documented wettability alteration abilities of Ca2+ and SO42- could be explained by the formation of ion-pairs and competitive adsorption onto the surface, respectively. The simulation results with the new surface model conceptually agree with the electric double layer expansion being the predominant mechanism for the low salinity effect in oil recovery enhancement. The proposed calcite surface model will benefit future simulation studies on the wettability characteristics of carbonate rocks, and facilitate the design and optimizations of chemical agents and formulations to enhance the oil recovery from carbonate reservoirs.

Keywords: studies wettability; surface; model; wettability alteration; calcite surface; surface model

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.