LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering.

Photo by mostafa_meraji from unsplash

HYPOTHESIS Understanding the stability and rheological behavior of suspensions composed of anisotropic particles is challenging due to the complex interplay of hydrodynamic and colloidal forces. We propose that orientationally-dependent interactions… Click to show full abstract

HYPOTHESIS Understanding the stability and rheological behavior of suspensions composed of anisotropic particles is challenging due to the complex interplay of hydrodynamic and colloidal forces. We propose that orientationally-dependent interactions resulting from the anisotropic nature of non-spherical sub-units strongly influences shear-induced particle aggregation/fragmentation and suspension rheological behavior. EXPERIMENTS Wide-, small-, and ultra-small-angle X-ray scattering experiments were used to simultaneously monitor changes in size and fractal dimensions of boehmite aggregates from 6 to 10,000 Å as the sample was recirculated through an in-situ capillary rheometer. The latter also provided simultaneous suspension viscosity data. Computational fluid dynamics modeling of the apparatus provided a more rigorous analysis of the fluid flow. FINDINGS Shear-induced aggregation/fragmentation was correlated with a complicated balance between hydrodynamic and colloidal forces. Multi-scale fractal aggregates formed in solution but the largest could be fragmented by shear. Orientationally-dependent interactions lead to a relatively large experimental suspension viscosity when the hydrodynamic force was small compared to colloidal forces. This manifests even at low boehmite mass fractions.

Keywords: shear induced; aggregation fragmentation; rheology; particle

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.