LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ growth of CdS quantum dots on phosphorus-doped carbon nitride hollow tubes as active 0D/1D heterostructures for photocatalytic hydrogen evolution.

Photo from archive.org

CdS quantum dots (QDs) were decorated onto phosphorus-doped hexagonal g-C3N4 tube (P-CNT) to form a novel high-preformance photocatalyst (CdS QDs/P-CNT) via an in-situ oil bath approach. The ultra-small CdS QDs… Click to show full abstract

CdS quantum dots (QDs) were decorated onto phosphorus-doped hexagonal g-C3N4 tube (P-CNT) to form a novel high-preformance photocatalyst (CdS QDs/P-CNT) via an in-situ oil bath approach. The ultra-small CdS QDs with the average diameter of ~9 nm are homogeneously anchored on the both external and internal surface of P-CNT hollow channel (~25 μm), yielding a type of zero-dimensional (0D)/one-dimensional (1D) heterojunction. The CdS QDs/P-CNT-1 exhibits the maximum photocatalytic H2 evolution rate of 1579 μmol h-1 g-1 under visible-light irradiation, which is 31.6, 6.8, 4.7 and 3.1 times higher than P-CNT, CdS, CdS/BCN and CdS/CNT, respectively. The improved photocatalytic activity of CdS QDs/P-CNT is primarily attributed to large surface area, P doping and formed 0D/1D heterojunction, which can broaden the light absorption, narrow the band gap, activate the H2O molecule and promote the spatial charge separation. Moreover, the DFT calculation coupled with experiment (Mott-Schottky curves) illustrates the electron transfer behavior of CdS QDs/P-CNT, showing that the Cd-1 site should be the main active center and P doping is beneficial to increase H2 production. This work provides a new strategy to design of highly active 0D/1D photocatalyst for photocatalytic H2 production.

Keywords: phosphorus doped; evolution; qds cnt; cds qds; cds quantum; quantum dots

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.