Development of Fe-Ni-based electrocatalysts with high efficiency and stability remains a foremost challenge in the research for oxygen evolution reaction (OER) under high-current-density. Herein, a fast reduction strategy is developed… Click to show full abstract
Development of Fe-Ni-based electrocatalysts with high efficiency and stability remains a foremost challenge in the research for oxygen evolution reaction (OER) under high-current-density. Herein, a fast reduction strategy is developed for synthesis of strongly coupled crystalline α-Ni(OH)2 with amorphous reduced FeOOH (r-FeOOH) heterostructure grown on Ni foam (r-FeOOH/α-Ni(OH)2/NF). The obtained r-FeOOH/α-Ni(OH)2 with particle sizes around ~ 10 nm is coated orderly on the 3D NF surface in this hybrid. Benefitting from the strong coupling effects between r-FeOOH and α-Ni(OH)2, low potentials of 1.62 and 1.66 V at ultra-high current densities of 1,000 and 1,500 mA cm-2, as well as a robust stability over 10 h at 1,500 mA cm-2 in alkaline electrolyte are achieved in 3D r-FeOOH/α-Ni(OH)2/NF. Such a high OER performance is almost the best among all previously reported Fe-Ni-based OER electrocatalysts. Experimental results revealed that the NiOOH species is the real OER active phase in the 3D r-FeOOH/α-Ni(OH)2/NF. Further, bifunctional 3D r-FeOOH/α-Ni(OH)2 in alkaline electrolyzer delivers low cell voltages of 2.32 and 2.78 V to attain 500 and 1,000 mA cm-2 toward the overall-water-splitting, surpassing the benchmark Pt/C-Ir/C/NF system.
               
Click one of the above tabs to view related content.