LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay.

Photo by nci from unsplash

Nano-size silver particles were stabilized on the inner surfaces of urea based periodic mesoporous organosilica (Ur-PMO). Aqueous extract of Euphorbia leaves as a sustainable and green reducing agent was applied… Click to show full abstract

Nano-size silver particles were stabilized on the inner surfaces of urea based periodic mesoporous organosilica (Ur-PMO). Aqueous extract of Euphorbia leaves as a sustainable and green reducing agent was applied for Ag-nanoparticles growth into the Ur-PMO channels. Physical and chemical properties of organosilica materials synthesized using various techniques such as FT-IR, small-angle XRD, PXRD, FESEM, TEM, SEM-EDX and atomic absorption spectrometry (AAS) were examined. Finally, the AgNPs/Ur-PMO were investigated on cell viability assay. An in vitro cytotoxicity test using MMT assay displayed that the designed material has good biocompatibility and could be a promising candidate for biomedical applications. The results also showed that the AgNPs/Ur-PMO compounds (especially, PMO; 1.27% AgNPs) had relatively good antibacterial and antibiofilm effects. It seems that the use of these compounds in hospital environments can reduce nosocomial infections as well as reduce antibiotic-resistant bacteria.

Keywords: mesoporous organosilica; cell viability; viability assay; based periodic; urea based; periodic mesoporous

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.