LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation.

Photo from wikipedia

Manganese-cerium metal oxide with flocculent structure prepared via the pyrolysis of Mn/Ce-MOF and supported Pd were applied for the catalytic oxidation of toluene. The Pd/Mn3Ce2-300 catalyst could completely oxidize toluene… Click to show full abstract

Manganese-cerium metal oxide with flocculent structure prepared via the pyrolysis of Mn/Ce-MOF and supported Pd were applied for the catalytic oxidation of toluene. The Pd/Mn3Ce2-300 catalyst could completely oxidize toluene at 190 °C, which presented excellent catalytic performance. Moreover, Pd/Mn3Ce2-300 possessed great reusability, stability and water resistance even under 10 vol% water vapors. A series of characterizations including X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) were used to investigate the physicochemical properties of the samples. It was found that Pd/Mn3Ce2-300 possessed a better reduction ability at low temperature, more surface absorbed oxygen and surface Pd species, and a strong interaction between Pd and Mn3Ce2-300, resulting in great catalytic performance for toluene degradation.

Keywords: oxidation; cerium composite; mn3ce2 300; metal; manganese cerium

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.