LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal-organic interface engineering for coupling palladium nanocrystals over functionalized graphene as an advanced electrocatalyst of methanol and ethanol oxidation.

Photo from wikipedia

Adjusting the surface structures and electronic structures of metal nanocrystals (NCs) by the metal-organic interface interaction is an emerging strategy to enhance their electrocatalytic behavior. In this work, the d-phenylalanine-functionalized… Click to show full abstract

Adjusting the surface structures and electronic structures of metal nanocrystals (NCs) by the metal-organic interface interaction is an emerging strategy to enhance their electrocatalytic behavior. In this work, the d-phenylalanine-functionalized graphene (DPHE-GS) anchoring Pd NCs (denoted as Pd/DPHE-GS) was fabricated via the diazo-reaction followed by a simple chemical reduction. Owing to the metal-organic interface interaction between Pd NCs and DPHE, the size, distribution and electronic structures of Pd NCs on the surface of DPHE-GS can be adjusted. Therefore, the Pd/DPHE-GS shows the highest electrocatalytic activity and the most robust long-term durability and stability towards methanol and ethanol oxidation reaction (MOR and EOR) compared to the commercial Pd/C and other counterparts. This work presents an effective interface engineering strategy to enhance electrocatalytic property.

Keywords: functionalized graphene; metal organic; organic interface; interface; dphe

Journal Title: Journal of colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.