LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning morphology of Pickering emulsions stabilised by biodegradable PLGA nanoparticles: How PLGA characteristics influence emulsion properties.

Photo by papaioannou_kostas from unsplash

In this study, we proved that the stabilisation of Pickering emulsions by polymer nanoparticles (NPs) heavily depends on polymer characteristics. We prepared NPs with four poly(lactide-co-glycolide) polymers (PLGA), of different… Click to show full abstract

In this study, we proved that the stabilisation of Pickering emulsions by polymer nanoparticles (NPs) heavily depends on polymer characteristics. We prepared NPs with four poly(lactide-co-glycolide) polymers (PLGA), of different molar masses (14,000 and 32,000 g/mol) and end groups (acid or alkylester). NPs were either bare (without stabilising polymer) or covered by polyvinyl alcohol (PVA). Pickering emulsions were prepared by mixing NP aqueous suspensions with various amounts of oil (Miglyol 812 N). First, NP wettability was directly affected by PLGA end group: ester-ending PLGA led to more hydrophobic NPs, compared to acid-ending PLGA. This effect of the end group could be slightly enhanced with smaller molar mass. Thus, bare PLGA NPs stabilised different types of emulsions (W/O/W and W/O), following Finkle's rule. However, the effect of PLGA characteristics was masked when NPs were covered by PVA, as PVA drove the stabilisation of O/W emulsions. Secondly, PLGA molar mass and end group also influenced its glass transition temperature (Tg), with spectacular consequences on emulsion formation. Indeed, the shortest ester-ending PLGA exhibited a Tg close to room temperature, when measured in the emulsion. This Tg, easily exceeded during emulsification process, led to a soft solid emulsion, stabilised by a network of NP debris.

Keywords: end group; emulsion; plga characteristics; pickering emulsions

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.