LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ubiquitin forms conventional decorated micelle structures with sodium dodecyl sulfate at saturation.

Photo by ryancp from unsplash

The anionic surfactant sodium dodecyl sulfate (SDS) interacts strongly with most globular proteins and denatures and unfolds them. While scattering studies using X-rays and neutrons have shown that this denaturation… Click to show full abstract

The anionic surfactant sodium dodecyl sulfate (SDS) interacts strongly with most globular proteins and denatures and unfolds them. While scattering studies using X-rays and neutrons have shown that this denaturation generally leads to protein-decorated SDS micelles, a different SDS-decorated polypeptide model has recently been suggested for complexes between SDS and Ubiquitin (UBI), in which individual SDS molecules are distributed on a partially stretched protein. To resolve this apparent discrepancy, we have investigated the SDS-UBI system by a number of complementary techniques. Small-angle X-ray scattering (SAXS) provides the overall structure of the SDS-UBI complexes, Tyr fluorescence and circular dichroism follow changes in tertiary and secondary structure, and isothermal titration calorimetry determines the stoichiometries of complexes and the amount of free SDS as a function of [SDS]. At low [SDS], UBI preserves its folded structure but dimerizes to a small extent. At 4 SDS per UBI, a complex is formed with two UBI and a small shared SDS cluster with 8 SDS molecules. In these complexes UBI preserves most of its native fold. At 10-12 SDS per UBI, which remains below the critical micelle concentration under our conditions, UBI-covered SDS micelles form with four UBIs around a core of 40 SDSs. This implies a protein-assisted micellization and an associated unfolding of UBI involving a change from mainly β-strands to mainly α-helical secondary structure. As [SDS] is increased, the complex gradually changes so that finally only one UBI covers one micelle with a similar number of SDS molecules at SDS saturation. Thus, we conclude that SDS unfolds UBI by mechanisms very similar to those observed for other globular proteins, leading to a protein-decorated SDS micelle rather than an SDS-decorated unfolded polypeptide chain.

Keywords: dodecyl sulfate; micelle; sodium dodecyl; structure; sds

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.