LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel.

Photo from wikipedia

HYPOTHESIS Nanofluidic diodes have attracted intense attention recently. Commonly used materials to design these devices are membrane-based short nanopores and aligned Carbon nanotube bundles. It is highly desirable and very… Click to show full abstract

HYPOTHESIS Nanofluidic diodes have attracted intense attention recently. Commonly used materials to design these devices are membrane-based short nanopores and aligned Carbon nanotube bundles. It is highly desirable and very challenging to develop a nanofluidic diode based on a single PDMS nanochannel which is easier to be introduced into an integrated electronic system on a chip. Layer-by-layer (LBL) deposition of charged polyelectrolytes can change the size and surface properties of PDMS nanochannels that provides new possibilities to develop high-performance nanofluidic based on PDMS nanochannels. EXPERIMENTS A novel design of nanofluidic diode is presented by controlling the surface charges and sizes of single PDMS nanochannels by surface modification using polyelectrolytes. Polybrene (PB) and Dextran sulfate (DS) are used to reduce the PDMS nanochannel size to meet the requirement of ion gating by LBL method and generate opposite surface charges at the ends of nanochannels. The parameters of such a nanofluidic diode are investigated systematically. FINDINGS This nanofluidic diode developed in this work has high effective current rectification performance. The rectification ratio can be as high as 218 which is the best ever reported in PB/DS modified nanochannels. This rectification ratio reduces with high voltage frequency and ionic concentration whereas increases in shorter nanochannels.

Keywords: diode; nanofluidic diode; surface; pdms nanochannel; diode based

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.