LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Axial spreading of droplet impact on ridged superhydrophobic surfaces.

Photo from wikipedia

HYPOTHESIS Due to the complex hydrodynamics of droplet impact on ridged superhydrophobic surfaces, quantitative droplet spreading characteristics are unrevealed, limiting the practical applications of ridged superhydrophobic surfaces. During droplet impacting,… Click to show full abstract

HYPOTHESIS Due to the complex hydrodynamics of droplet impact on ridged superhydrophobic surfaces, quantitative droplet spreading characteristics are unrevealed, limiting the practical applications of ridged superhydrophobic surfaces. During droplet impacting, the size ratio (the ratio of the ridge diameter to the droplet diameter) is an important factor that affects droplet spreading dynamics. EXPERIMENTS We fabricated ridged superhydrophobic surfaces with size ratios ranging from zero to one, and conduct water droplet impact experiments on these surfaces at varied Weber numbers. Aided by the numerical simulations and theoretical analysis, we illustrate the droplet spreading dynamics and reveal the law on the maximum axial spreading coefficient. FINDS The results show that the droplet spreading and retraction dynamics on ridged superhydrophobic surfaces are significantly asymmetric in the axial and spanwise directions. Focusing on the maximum axial spreading coefficient, we find it decreases first and then increases with increasing size ratios, indicating the existence of the critical size ratio. The maximum axial spreading coefficient can be reduced by 25-40% at the critical size ratio compared with that on flat surfaces. To predict the maximum axial spreading coefficient, two theoretical models are proposed respectively for size ratios smaller and larger than the critical size ratio.

Keywords: axial spreading; superhydrophobic surfaces; size; droplet impact; ridged superhydrophobic

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.