We report CoFe2O4 and carbon nanotubes hybrid aerogels as a novel anode material for potassium ion batteries (KIBs). The synthetic route take the advantage of marine biobased materials as the… Click to show full abstract
We report CoFe2O4 and carbon nanotubes hybrid aerogels as a novel anode material for potassium ion batteries (KIBs). The synthetic route take the advantage of marine biobased materials as the precursor and facilely produce large-scale production of hybrid CoFe2O4 and carbon nanotubes aerogels as the advanced anode. The hybrid aerogels deliver a remarkable capacity of 180 mAh g-1 with high stability over 200 cycles at a current density of 0.1 A g-1. The high rate charge/discharge reveals a relatively high capacity of 83 mAh g-1 even at the current density of 1.0 A g-1. In-situ XRD investigations reveal the phase evolution during charge/discharge, demonstrating the high stability of hybrid aerogels for the potassium intercalation/extraction. The high specific surface area and large numbers of mesopores with more active sites can benefit the effective transmission of electrons and K ions, leading to an improved specific capacity and cycle stability.
               
Click one of the above tabs to view related content.