In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and… Click to show full abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
               
Click one of the above tabs to view related content.