LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography.

Photo by philldane from unsplash

Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers… Click to show full abstract

Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained. Heparin-like polymers with different chemical compositions are grafted onto PDMS-Br surfaces using visible-light-induced graft polymerization. Compared with unmodified PDMS-Br, surfaces modified by sulfonate-containing polymers are more friendly to vascular cells, while those modified by a glyco-polymer are much more resistant to vascular cells. The introduction of lotus leaf-like topography results in different degrees of decrease in cell density on different heparin-like polymer-modified surfaces. In addition, the combination of heparin-like polymers and lotus leaf-like topography results in the change in protein adsorption, indicating that the two factors may affect the surface vascular cell behavior by affecting the adsorption of relative proteins. The combination of bionic surface topography and different chemical components of heparin-like polymers on material surfaces suggests a new way of engineering cell-material interactions.

Keywords: topography; lotus leaf; leaf like; heparin like; like topography; like polymers

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.