A Z-scheme photosystems combining Schottky junction and loading of applicable bandgap semiconductor is beneficial for enhancing the charge carriers' separation/transfer as well as maintain their excellent redox ability. Here, CdxZn1-xS@Au… Click to show full abstract
A Z-scheme photosystems combining Schottky junction and loading of applicable bandgap semiconductor is beneficial for enhancing the charge carriers' separation/transfer as well as maintain their excellent redox ability. Here, CdxZn1-xS@Au was in-situ deposited on the (010) facets of BiVO4 taking Au as a bridge for constructing a sandwich structure CdxZn1-xS@Au/BiVO4 Z-scheme photocatalyst. The electrons in BiVO4 (010) migrate unidirectionally to Au nanoparticles across the Schottky junction and effectively suppress opposite electrons flow, then be captured by the excited holes in CdxZn1-xS. Furthermore, Zn-doping also contributes to an appropriate redox ability and charge carriers separation. Benefiting from the dual-facilitated effects, the ternary CdxZn1-xS@Au/BiVO4 exhibited superior photocatalytic activity for CO2 reduction under visible light irradiation using H2O as a reducing agent, as compared with CdS and CdS@Au/BiVO4. Furthermore, the intermediate product HCOO* fixed on the surface of CdxZn1-xS@Au/BiVO4 is identified by in-situ FT-IR, playing a key role in the conversion of CO2 to CO and then improve photocatalytic selectivity.
               
Click one of the above tabs to view related content.