LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative analysis of membrane fouling mechanisms induced by colloidal polymer: Effects of sodium and calcium ions.

Photo by dawson2406 from unsplash

Polymer (anionic polyacrylamide, APAM) flooding produced wastewater has a relatively high degree of mineralization and abundant ionic species. A comprehensive and systematic investigation of the influence of ion identity on… Click to show full abstract

Polymer (anionic polyacrylamide, APAM) flooding produced wastewater has a relatively high degree of mineralization and abundant ionic species. A comprehensive and systematic investigation of the influence of ion identity on APAM-induced membrane fouling is extremely necessary but has not been conducted to date. A comparative investigation was performed herein to reveal the underlying mechanisms of the influence of Na+ and Ca2+ (1000 mg/L) on APAM-induced membrane fouling in the adsorption and microfiltration (MF) processes. Na+ and Ca2+ exhibited contrasting influences on the filtration efficiency, cleaning efficiency, and fouling resistance. Compared to Na+, Ca2+ promoted reversible fouling and the formation of a loose cake layer; moreover, a higher removal rate and flux recovery were achieved. Additionally, simulations based on adsorption kinetic and membrane fouling models, and a series of microscopic analyses were performed to validate the contradictory influences. During the APAM-based MF process, the membrane fouling was effectively mitigated at the applied ionic strength because of the stronger hydration repulsive force generated by hydrated Ca2+ compared to that by Na+. This study provides vital guidance for membrane fouling control in the microfiltration of polymer flooding produced wastewater.

Keywords: analysis membrane; comparative analysis; fouling mechanisms; polymer; membrane fouling; membrane

Journal Title: Journal of colloid and interface science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.